1:"$Sreact.fragment" 2:I[94210,["/_next/static/chunks/b292ef59945299fb.js","/_next/static/chunks/db1ed03dad8fa1ad.js"],"default"] 3:I[49451,["/_next/static/chunks/b292ef59945299fb.js","/_next/static/chunks/db1ed03dad8fa1ad.js"],"default"] 6:I[99456,["/_next/static/chunks/b292ef59945299fb.js","/_next/static/chunks/db1ed03dad8fa1ad.js"],"OutletBoundary"] 7:"$Sreact.suspense" 9:I[99456,["/_next/static/chunks/b292ef59945299fb.js","/_next/static/chunks/db1ed03dad8fa1ad.js"],"ViewportBoundary"] b:I[99456,["/_next/static/chunks/b292ef59945299fb.js","/_next/static/chunks/db1ed03dad8fa1ad.js"],"MetadataBoundary"] d:I[51894,[],"default"] :HL["/_next/static/chunks/2e73269b79f02f4d.css","style"] :HL["/_next/static/media/2a65768255d6b625-s.p.d19752fb.woff2","font",{"crossOrigin":"","type":"font/woff2"}] :HL["/_next/static/media/47fe1b7cd6e6ed85-s.p.855a563b.woff2","font",{"crossOrigin":"","type":"font/woff2"}] :HL["/_next/static/media/83afe278b6a6bb3c-s.p.3a6ba036.woff2","font",{"crossOrigin":"","type":"font/woff2"}] :HL["/_next/static/media/8e6fa89aa22d24ec-s.p.3aec397d.woff2","font",{"crossOrigin":"","type":"font/woff2"}] :HL["/_next/static/media/a218039a3287bcfd-s.p.4a23d71b.woff2","font",{"crossOrigin":"","type":"font/woff2"}] :HL["/_next/static/media/e2334d715941921e-s.p.d82a9aff.woff2","font",{"crossOrigin":"","type":"font/woff2"}] 0:{"P":null,"b":"hEyQdfANp7GcGtypER5lV","c":["","fr","blog","rag-vs-finetuning"],"q":"","i":false,"f":[[["",{"children":[["locale","fr","d"],{"children":["blog",{"children":[["slug","rag-vs-finetuning","d"],{"children":["__PAGE__",{}]}]}]},"$undefined","$undefined",true]}],[["$","$1","c",{"children":[null,["$","$L2",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L3",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":404}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],[]],"forbidden":"$undefined","unauthorized":"$undefined"}]]}],{"children":[["$","$1","c",{"children":[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/chunks/2e73269b79f02f4d.css","precedence":"next","crossOrigin":"$undefined","nonce":"$undefined"}],["$","script","script-0",{"src":"/_next/static/chunks/e70cf233ca02384a.js","async":true,"nonce":"$undefined"}],["$","script","script-1",{"src":"/_next/static/chunks/c72270908abd0eb3.js","async":true,"nonce":"$undefined"}],["$","script","script-2",{"src":"/_next/static/chunks/d27307698ed538b1.js","async":true,"nonce":"$undefined"}]],"$L4"]}],{"children":[["$","$1","c",{"children":[null,["$","$L2",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L3",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","forbidden":"$undefined","unauthorized":"$undefined"}]]}],{"children":[["$","$1","c",{"children":[null,["$","$L2",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L3",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","forbidden":"$undefined","unauthorized":"$undefined"}]]}],{"children":[["$","$1","c",{"children":["$L5",null,["$","$L6",null,{"children":["$","$7",null,{"name":"Next.MetadataOutlet","children":"$@8"}]}]]}],{},null,false,false]},null,false,false]},null,false,false]},null,false,false]},null,false,false],["$","$1","h",{"children":[null,["$","$L9",null,{"children":"$@a"}],["$","div",null,{"hidden":true,"children":["$","$Lb",null,{"children":["$","$7",null,{"name":"Next.Metadata","children":"$@c"}]}]}],["$","meta",null,{"name":"next-size-adjust","content":""}]]}],false]],"m":"$undefined","G":["$d",[]],"S":true} f:I[83977,["/_next/static/chunks/e70cf233ca02384a.js","/_next/static/chunks/c72270908abd0eb3.js","/_next/static/chunks/d27307698ed538b1.js"],"Image"] 5:["$","article",null,{"className":"container py-12 md:py-20","children":["$","div",null,{"className":"max-w-3xl mx-auto","children":["$Le",["$","div",null,{"className":"space-y-6 mb-12","children":[["$","div",null,{"className":"flex flex-wrap gap-2","children":["$","span",null,{"data-slot":"badge","className":"inline-flex items-center justify-center rounded-full border font-medium w-fit whitespace-nowrap shrink-0 [&>svg]:size-3 gap-1 [&>svg]:pointer-events-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive transition-[color,box-shadow] overflow-hidden border-transparent [a&]:hover:bg-primary/90 bg-primary/10 text-primary hover:bg-primary/20 border-none text-sm px-3 py-1","children":"Tutoriels Techniques"}]}],["$","h1",null,{"className":"text-3xl md:text-5xl font-bold leading-tight","children":"RAG vs Fine-tuning : quelle approche pour votre use case ?"}],["$","div",null,{"className":"relative w-full aspect-video rounded-xl overflow-hidden my-8 shadow-lg","children":["$","$Lf",null,{"src":"/images/blog_rag_vs_finetuning.png","alt":"RAG vs Fine-tuning : quelle approche pour votre use case ?","fill":true,"className":"object-cover","priority":true}]}],["$","div",null,{"className":"flex flex-wrap items-center gap-6 text-slate-500 text-sm border-b border-slate-100 dark:border-slate-800 pb-8","children":[["$","div",null,{"className":"flex items-center gap-2","children":[["$","svg",null,{"ref":"$undefined","xmlns":"http://www.w3.org/2000/svg","width":16,"height":16,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-user","aria-hidden":"true","children":[["$","path","975kel",{"d":"M19 21v-2a4 4 0 0 0-4-4H9a4 4 0 0 0-4 4v2"}],["$","circle","17ys0d",{"cx":"12","cy":"7","r":"4"}],"$undefined"]}],["$","span",null,{"className":"font-medium text-slate-900 dark:text-slate-200","children":"Dr. Sophie Laurent"}]]}],["$","div",null,{"className":"flex items-center gap-2","children":[["$","svg",null,{"ref":"$undefined","xmlns":"http://www.w3.org/2000/svg","width":16,"height":16,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-calendar","aria-hidden":"true","children":[["$","path","1cmpym",{"d":"M8 2v4"}],["$","path","4m81vk",{"d":"M16 2v4"}],["$","rect","1hopcy",{"width":"18","height":"18","x":"3","y":"4","rx":"2"}],["$","path","8toen8",{"d":"M3 10h18"}],"$undefined"]}],["$","span",null,{"children":"2025-01-05"}]]}],["$","div",null,{"className":"flex items-center gap-2","children":[["$","svg",null,{"ref":"$undefined","xmlns":"http://www.w3.org/2000/svg","width":16,"height":16,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-clock","aria-hidden":"true","children":[["$","path","mmk7yg",{"d":"M12 6v6l4 2"}],["$","circle","1mglay",{"cx":"12","cy":"12","r":"10"}],"$undefined"]}],["$","span",null,{"children":"6 min"}]]}]]}]]}],["$","div",null,{"className":"prose prose-lg dark:prose-invert max-w-none","children":["$","article",null,{"className":"prose prose-lg max-w-none prose-headings:font-heading prose-a:text-primary hover:prose-a:text-primary-700","children":[["$","p","p-0",{"className":"mb-4 text-gray-600 leading-relaxed","children":["Vous voulez adapter un LLM à vos données métiers ? Deux approches s'offrent à vous : ",["$","strong","strong-0",{"children":"RAG (Retrieval-Augmented Generation)"}]," et ",["$","strong","strong-1",{"children":"Fine-tuning"}],". Comment choisir ? Voici un guide pratique."]}],"\n",["$","h2","h2-0",{"className":"text-3xl font-semibold mb-4 mt-12 text-gray-800 border-b pb-2","children":"RAG : Retrieval-Augmented Generation"}],"\n",["$","p","p-1",{"className":"mb-4 text-gray-600 leading-relaxed","children":[["$","strong","strong-0",{"children":"Principe :"}],"\nLe LLM n'est pas modifié. À chaque requête, on récupère les documents pertinents dans une base de connaissances et on les injecte dans le prompt."]}],"\n","$L10","\n","$L11","\n","$L12","\n","$L13","\n","$L14","\n","$L15","\n","$L16","\n","$L17","\n","$L18","\n","$L19","\n","$L1a","\n","$L1b","\n","$L1c","\n","$L1d","\n","$L1e","\n","$L1f","\n","$L20","\n","$L21","\n","$L22","\n","$L23","\n","$L24","\n","$L25","\n","$L26","\n","$L27","\n","$L28","\n","$L29","\n","$L2a","\n","$L2b","\n","$L2c","\n","$L2d","\n","$L2e","\n","$L2f","\n","$L30","\n","$L31","\n","$L32","\n","$L33","\n","$L34","\n","$L35","\n","$L36","\n","$L37"]}]}],"$L38"]}]}] 10:["$","p","p-2",{"className":"mb-4 text-gray-600 leading-relaxed","children":["$","strong","strong-0",{"children":"Architecture :"}]}] 11:["$","pre","pre-0",{"children":["$","code","code-0",{"className":"block bg-gray-900 text-gray-100 p-4 rounded-lg overflow-x-auto my-4 font-mono text-sm shadow-lg","children":"User Query → Embedding → Search in Vector DB → Retrieve Top-K Docs → Inject in Prompt → LLM → Response\n"}]}] 12:["$","p","p-3",{"className":"mb-4 text-gray-600 leading-relaxed","children":[["$","strong","strong-0",{"children":"Avantages :"}],"\n✅ Pas besoin de réentraîner le modèle\n✅ Les données sont toujours à jour (ajout/suppression facile)\n✅ Coût faible (juste le coût des embeddings et de la recherche)\n✅ Transparence : vous savez d'où viennent les réponses (citations)"]}] 13:["$","p","p-4",{"className":"mb-4 text-gray-600 leading-relaxed","children":[["$","strong","strong-0",{"children":"Inconvénients :"}],"\n❌ Limité par la fenêtre de contexte du LLM\n❌ Qualité dépendante de la pertinence du retrieval\n❌ Latence plus élevée (recherche + génération)"]}] 14:["$","p","p-5",{"className":"mb-4 text-gray-600 leading-relaxed","children":["$","strong","strong-0",{"children":"Cas d'usage :"}]}] 15:["$","ul","ul-0",{"className":"list-disc pl-6 mb-4 space-y-2","children":["\n",["$","li","li-0",{"className":"text-gray-600","children":[["$","strong","strong-0",{"children":"FAQ interne"}],", documentation technique"]}],"\n",["$","li","li-1",{"className":"text-gray-600","children":[["$","strong","strong-0",{"children":"Support client"}]," basé sur une base de connaissances"]}],"\n",["$","li","li-2",{"className":"text-gray-600","children":[["$","strong","strong-0",{"children":"Recherche dans des archives"}]," (juridique, compliance)"]}],"\n",["$","li","li-3",{"className":"text-gray-600","children":["$","strong","strong-0",{"children":"Tout use case où les données changent fréquemment"}]}],"\n"]}] 16:["$","hr","hr-0",{}] 17:["$","h2","h2-1",{"className":"text-3xl font-semibold mb-4 mt-12 text-gray-800 border-b pb-2","children":"Fine-tuning : Réentraînement du modèle"}] 18:["$","p","p-6",{"className":"mb-4 text-gray-600 leading-relaxed","children":[["$","strong","strong-0",{"children":"Principe :"}],"\nOn réentraîne (partiellement) le LLM sur vos données pour qu'il \"apprenne\" votre domaine, votre ton, vos patterns."]}] 19:["$","p","p-7",{"className":"mb-4 text-gray-600 leading-relaxed","children":["$","strong","strong-0",{"children":"Méthodes :"}]}] 1a:["$","ul","ul-1",{"className":"list-disc pl-6 mb-4 space-y-2","children":["\n",["$","li","li-0",{"className":"text-gray-600","children":[["$","strong","strong-0",{"children":"Full fine-tuning :"}]," Réentraîner tous les paramètres (coûteux, rare)"]}],"\n",["$","li","li-1",{"className":"text-gray-600","children":[["$","strong","strong-0",{"children":"LoRA (Low-Rank Adaptation) :"}]," Réentraîner seulement une petite partie (populaire, efficace)"]}],"\n"]}] 1b:["$","p","p-8",{"className":"mb-4 text-gray-600 leading-relaxed","children":[["$","strong","strong-0",{"children":"Avantages :"}],"\n✅ Le modèle \"comprend\" vraiment votre domaine\n✅ Meilleure performance sur des tâches spécifiques\n✅ Peut apprendre un ton, un style, des formats de sortie\n✅ Pas de limite de contexte pour les connaissances apprises"]}] 1c:["$","p","p-9",{"className":"mb-4 text-gray-600 leading-relaxed","children":[["$","strong","strong-0",{"children":"Inconvénients :"}],"\n❌ Coût élevé (données, compute, temps)\n❌ Nécessite un dataset de qualité (milliers d'exemples)\n❌ Mise à jour complexe (il faut réentraîner)\n❌ Risque d'overfitting et de catastrophic forgetting"]}] 1d:["$","p","p-10",{"className":"mb-4 text-gray-600 leading-relaxed","children":["$","strong","strong-0",{"children":"Cas d'usage :"}]}] 1e:["$","ul","ul-2",{"className":"list-disc pl-6 mb-4 space-y-2","children":["\n",["$","li","li-0",{"className":"text-gray-600","children":[["$","strong","strong-0",{"children":"Génération de contenu"}]," dans un style très spécifique"]}],"\n",["$","li","li-1",{"className":"text-gray-600","children":[["$","strong","strong-0",{"children":"Traduction"}]," dans un jargon métier"]}],"\n",["$","li","li-2",{"className":"text-gray-600","children":[["$","strong","strong-0",{"children":"Classification"}]," ou ",["$","strong","strong-1",{"children":"extraction d'entités"}]," sur un domaine très technique"]}],"\n",["$","li","li-3",{"className":"text-gray-600","children":[["$","strong","strong-0",{"children":"Tâches répétitives"}]," où la performance doit être maximale"]}],"\n"]}] 1f:["$","hr","hr-1",{}] 20:["$","h2","h2-2",{"className":"text-3xl font-semibold mb-4 mt-12 text-gray-800 border-b pb-2","children":"Comparaison directe"}] 21:["$","table","table-0",{"children":[["$","thead","thead-0",{"children":["$","tr","tr-0",{"children":[["$","th","th-0",{"children":"Critère"}],["$","th","th-1",{"children":"RAG"}],["$","th","th-2",{"children":"Fine-tuning"}]]}]}],["$","tbody","tbody-0",{"children":[["$","tr","tr-0",{"children":[["$","td","td-0",{"children":["$","strong","strong-0",{"children":"Coût"}]}],["$","td","td-1",{"children":"Faible"}],["$","td","td-2",{"children":"Élevé"}]]}],["$","tr","tr-1",{"children":[["$","td","td-0",{"children":["$","strong","strong-0",{"children":"Complexité"}]}],["$","td","td-1",{"children":"Moyenne"}],["$","td","td-2",{"children":"Élevée"}]]}],["$","tr","tr-2",{"children":[["$","td","td-0",{"children":["$","strong","strong-0",{"children":"Temps de setup"}]}],["$","td","td-1",{"children":"Heures/jours"}],["$","td","td-2",{"children":"Semaines"}]]}],["$","tr","tr-3",{"children":[["$","td","td-0",{"children":["$","strong","strong-0",{"children":"Mise à jour des données"}]}],["$","td","td-1",{"children":"Facile (temps réel)"}],["$","td","td-2",{"children":"Difficile (réentraînement)"}]]}],["$","tr","tr-4",{"children":[["$","td","td-0",{"children":["$","strong","strong-0",{"children":"Performance"}]}],["$","td","td-1",{"children":"Bonne"}],["$","td","td-2",{"children":"Excellente (si bien fait)"}]]}],["$","tr","tr-5",{"children":[["$","td","td-0",{"children":["$","strong","strong-0",{"children":"Transparence"}]}],["$","td","td-1",{"children":"Haute (citations)"}],["$","td","td-2",{"children":"Faible (boîte noire)"}]]}],["$","tr","tr-6",{"children":[["$","td","td-0",{"children":["$","strong","strong-0",{"children":"Use cases"}]}],["$","td","td-1",{"children":"Connaissance factuelle"}],["$","td","td-2",{"children":"Tâches spécifiques, style"}]]}]]}]]}] 22:["$","hr","hr-2",{}] 23:["$","h2","h2-3",{"className":"text-3xl font-semibold mb-4 mt-12 text-gray-800 border-b pb-2","children":"Peut-on combiner les deux ?"}] 24:["$","p","p-11",{"className":"mb-4 text-gray-600 leading-relaxed","children":[["$","strong","strong-0",{"children":"Oui !"}]," C'est même souvent la meilleure approche :"]}] 25:["$","ol","ol-0",{"className":"list-decimal pl-6 mb-4 space-y-2","children":["\n",["$","li","li-0",{"className":"text-gray-600","children":[["$","strong","strong-0",{"children":"Fine-tuner"}]," le modèle pour apprendre le domaine, le ton, les formats"]}],"\n",["$","li","li-1",{"className":"text-gray-600","children":[["$","strong","strong-0",{"children":"Utiliser RAG"}]," pour injecter les données factuelles à jour"]}],"\n"]}] 26:["$","p","p-12",{"className":"mb-4 text-gray-600 leading-relaxed","children":[["$","strong","strong-0",{"children":"Exemple :"}],"\nVous fine-tunez un modèle sur le jargon médical, puis vous utilisez RAG pour récupérer les dernières publications scientifiques."]}] 27:["$","hr","hr-3",{}] 28:["$","h2","h2-4",{"className":"text-3xl font-semibold mb-4 mt-12 text-gray-800 border-b pb-2","children":"Comment décider ?"}] 29:["$","p","p-13",{"className":"mb-4 text-gray-600 leading-relaxed","children":["$","strong","strong-0",{"children":"Choisissez RAG si :"}]}] 2a:["$","ul","ul-3",{"className":"list-disc pl-6 mb-4 space-y-2","children":["\n",["$","li","li-0",{"className":"text-gray-600","children":"Vos données changent fréquemment"}],"\n",["$","li","li-1",{"className":"text-gray-600","children":"Vous avez besoin de transparence (citations)"}],"\n",["$","li","li-2",{"className":"text-gray-600","children":"Vous avez un budget limité"}],"\n",["$","li","li-3",{"className":"text-gray-600","children":"Vous voulez démarrer vite"}],"\n"]}] 2b:["$","p","p-14",{"className":"mb-4 text-gray-600 leading-relaxed","children":["$","strong","strong-0",{"children":"Choisissez Fine-tuning si :"}]}] 2c:["$","ul","ul-4",{"className":"list-disc pl-6 mb-4 space-y-2","children":["\n",["$","li","li-0",{"className":"text-gray-600","children":"Vous avez un dataset de qualité (milliers d'exemples)"}],"\n",["$","li","li-1",{"className":"text-gray-600","children":"Vous voulez une performance maximale sur une tâche précise"}],"\n",["$","li","li-2",{"className":"text-gray-600","children":"Vous pouvez investir du temps et de l'argent"}],"\n",["$","li","li-3",{"className":"text-gray-600","children":"Vos données sont stables"}],"\n"]}] 2d:["$","p","p-15",{"className":"mb-4 text-gray-600 leading-relaxed","children":["$","strong","strong-0",{"children":"Combinez les deux si :"}]}] 2e:["$","ul","ul-5",{"className":"list-disc pl-6 mb-4 space-y-2","children":["\n",["$","li","li-0",{"className":"text-gray-600","children":"Vous avez les ressources"}],"\n",["$","li","li-1",{"className":"text-gray-600","children":"Vous voulez le meilleur des deux mondes"}],"\n"]}] 2f:["$","hr","hr-4",{}] 30:["$","h2","h2-5",{"className":"text-3xl font-semibold mb-4 mt-12 text-gray-800 border-b pb-2","children":"Nos formations RAG et Fine-tuning"}] 31:["$","p","p-16",{"className":"mb-4 text-gray-600 leading-relaxed","children":"Chez Ikasia, nous proposons :"}] 32:["$","p","p-17",{"className":"mb-4 text-gray-600 leading-relaxed","children":[["$","strong","strong-0",{"children":"Atelier RAG Entreprise (3h30)"}],"\nConstruisez un système RAG sur SharePoint/Confluence avec évaluations et déploiement."]}] 33:["$","p","p-18",{"className":"mb-4 text-gray-600 leading-relaxed","children":[["$","strong","strong-0",{"children":"Bootcamp Data Science & ML (8 semaines)"}],"\nModule dédié au fine-tuning de LLMs avec LoRA et PEFT."]}] 34:["$","hr","hr-5",{}] 35:["$","h2","h2-6",{"className":"text-3xl font-semibold mb-4 mt-12 text-gray-800 border-b pb-2","children":"Conclusion"}] 36:["$","p","p-19",{"className":"mb-4 text-gray-600 leading-relaxed","children":["Il n'y a pas de solution universelle. ",["$","strong","strong-0",{"children":"RAG"}]," est souvent le point de départ idéal (rapide, flexible). ",["$","strong","strong-1",{"children":"Fine-tuning"}]," est réservé aux cas où vous avez des besoins très spécifiques et les ressources nécessaires."]}] 37:["$","p","p-20",{"className":"mb-4 text-gray-600 leading-relaxed","children":["L'idéal ? ",["$","strong","strong-0",{"children":"Combiner les deux"}]," pour maximiser la performance."]}] 38:["$","div",null,{"className":"mt-12 pt-8 border-t border-slate-100 dark:border-slate-800","children":[["$","h3",null,{"className":"text-lg font-semibold mb-4","children":"Tags"}],["$","div",null,{"className":"flex flex-wrap gap-2","children":[["$","span","RAG",{"data-slot":"badge","className":"inline-flex items-center justify-center rounded-full border px-2 py-0.5 text-xs font-medium w-fit whitespace-nowrap shrink-0 [&>svg]:size-3 gap-1 [&>svg]:pointer-events-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive transition-[color,box-shadow] overflow-hidden [a&]:hover:bg-accent [a&]:hover:text-accent-foreground text-slate-600","children":[["$","svg",null,{"ref":"$undefined","xmlns":"http://www.w3.org/2000/svg","width":12,"height":12,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-tag mr-1","aria-hidden":"true","children":[["$","path","vktsd0",{"d":"M12.586 2.586A2 2 0 0 0 11.172 2H4a2 2 0 0 0-2 2v7.172a2 2 0 0 0 .586 1.414l8.704 8.704a2.426 2.426 0 0 0 3.42 0l6.58-6.58a2.426 2.426 0 0 0 0-3.42z"}],["$","circle","kqv944",{"cx":"7.5","cy":"7.5","r":".5","fill":"currentColor"}],"$undefined"]}]," ","RAG"]}],["$","span","FineTuning",{"data-slot":"badge","className":"inline-flex items-center justify-center rounded-full border px-2 py-0.5 text-xs font-medium w-fit whitespace-nowrap shrink-0 [&>svg]:size-3 gap-1 [&>svg]:pointer-events-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive transition-[color,box-shadow] overflow-hidden [a&]:hover:bg-accent [a&]:hover:text-accent-foreground text-slate-600","children":[["$","svg",null,{"ref":"$undefined","xmlns":"http://www.w3.org/2000/svg","width":12,"height":12,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-tag mr-1","aria-hidden":"true","children":[["$","path","vktsd0",{"d":"M12.586 2.586A2 2 0 0 0 11.172 2H4a2 2 0 0 0-2 2v7.172a2 2 0 0 0 .586 1.414l8.704 8.704a2.426 2.426 0 0 0 3.42 0l6.58-6.58a2.426 2.426 0 0 0 0-3.42z"}],["$","circle","kqv944",{"cx":"7.5","cy":"7.5","r":".5","fill":"currentColor"}],"$undefined"]}]," ","FineTuning"]}],["$","span","LLM",{"data-slot":"badge","className":"inline-flex items-center justify-center rounded-full border px-2 py-0.5 text-xs font-medium w-fit whitespace-nowrap shrink-0 [&>svg]:size-3 gap-1 [&>svg]:pointer-events-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive transition-[color,box-shadow] overflow-hidden [a&]:hover:bg-accent [a&]:hover:text-accent-foreground text-slate-600","children":[["$","svg",null,{"ref":"$undefined","xmlns":"http://www.w3.org/2000/svg","width":12,"height":12,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-tag mr-1","aria-hidden":"true","children":[["$","path","vktsd0",{"d":"M12.586 2.586A2 2 0 0 0 11.172 2H4a2 2 0 0 0-2 2v7.172a2 2 0 0 0 .586 1.414l8.704 8.704a2.426 2.426 0 0 0 3.42 0l6.58-6.58a2.426 2.426 0 0 0 0-3.42z"}],["$","circle","kqv944",{"cx":"7.5","cy":"7.5","r":".5","fill":"currentColor"}],"$undefined"]}]," ","LLM"]}],["$","span","MachineLearning",{"data-slot":"badge","className":"inline-flex items-center justify-center rounded-full border px-2 py-0.5 text-xs font-medium w-fit whitespace-nowrap shrink-0 [&>svg]:size-3 gap-1 [&>svg]:pointer-events-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive transition-[color,box-shadow] overflow-hidden [a&]:hover:bg-accent [a&]:hover:text-accent-foreground text-slate-600","children":["$L39"," ","MachineLearning"]}]]}]]}] 39:["$","svg",null,{"ref":"$undefined","xmlns":"http://www.w3.org/2000/svg","width":12,"height":12,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-tag mr-1","aria-hidden":"true","children":[["$","path","vktsd0",{"d":"M12.586 2.586A2 2 0 0 0 11.172 2H4a2 2 0 0 0-2 2v7.172a2 2 0 0 0 .586 1.414l8.704 8.704a2.426 2.426 0 0 0 3.42 0l6.58-6.58a2.426 2.426 0 0 0 0-3.42z"}],["$","circle","kqv944",{"cx":"7.5","cy":"7.5","r":".5","fill":"currentColor"}],"$undefined"]}] 3a:I[69286,["/_next/static/chunks/e70cf233ca02384a.js","/_next/static/chunks/c72270908abd0eb3.js","/_next/static/chunks/d27307698ed538b1.js"],"default"] e:["$","$L3a",null,{"ref":null,"href":"/fr/blog","locale":"$undefined","localeCookie":{"name":"NEXT_LOCALE","sameSite":"lax"},"children":[["$","svg",null,{"ref":"$undefined","xmlns":"http://www.w3.org/2000/svg","width":24,"height":24,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-arrow-left mr-2 h-4 w-4","aria-hidden":"true","children":[["$","path","1l729n",{"d":"m12 19-7-7 7-7"}],["$","path","x3x0zl",{"d":"M19 12H5"}],"$undefined"]}]," Retour au blog"],"data-slot":"button","className":"inline-flex items-center justify-center gap-2 whitespace-nowrap rounded-md text-sm font-medium disabled:pointer-events-none disabled:opacity-50 [&_svg]:pointer-events-none [&_svg:not([class*='size-'])]:size-4 shrink-0 [&_svg]:shrink-0 outline-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive dark:hover:bg-accent/50 h-9 px-4 py-2 has-[>svg]:px-3 mb-8 pl-0 hover:pl-0 hover:bg-transparent text-slate-500 hover:text-primary transition-colors"}] 4:["$","html",null,{"lang":"fr","className":"inter_5901b7c6-module__ec5Qua__variable poppins_42fdbe96-module__6Gf6Dq__variable playfair_display_dc3b86c2-module__wRxeBG__variable","suppressHydrationWarning":true,"children":["$","body",null,{"className":"min-h-screen flex flex-col font-sans","suppressHydrationWarning":true,"children":"$L3b"}]}] 3c:I[4200,["/_next/static/chunks/e70cf233ca02384a.js","/_next/static/chunks/c72270908abd0eb3.js","/_next/static/chunks/d27307698ed538b1.js"],"default"] 3b:["$","$L3c",null,{"formats":"$undefined","locale":"fr","messages":{"home":{"hero":{"title":"Formation IA pour les entreprises qui veulent rester compétitives","subtitle":"Formez vos équipes à l'IA générative, au Machine Learning et à la Data Science. Des programmes sur mesure pour dirigeants, managers et experts techniques.","cta_primary":"Découvrir nos formations","cta_secondary":"Parler à un expert"},"vision":{"title":"Une approche humaine de l'IA","subtitle":"Chez Ikasia, nous croyons que l'intelligence artificielle doit augmenter l'humain, pas le remplacer. Nos formations sont conçues pour vous donner les clés de cette technologie, avec une approche éthique et pragmatique.","cta":"Notre philosophie"},"value_prop":{"title":"Pourquoi choisir Ikasia ?","dictionary":{"word":"ikasi","phonetic":"/i.ka.si/","type":"verbe (basque)","definition":"apprendre"},"quote":"Nous unissons cette soif d'apprendre à la puissance de l'Intelligence Artificielle pour éveiller le potentiel de chaque collaborateur.","items":[{"title":"Expertise Terrain","description":"Formateurs consultants actifs sur des projets IA réels."},{"title":"Approche Pragmatique","description":"Pas de théorie inutile, focus sur les cas d'usage business."},{"title":"Sur Mesure","description":"Programmes adaptés à votre secteur et votre maturité data."}]},"featured_courses":{"title":"Nos formations à la une","view_all":"Voir toutes les formations"}},"nav":{"home":"Accueil","formations":"Formations","workshops":"Ateliers","about":"À propos","blog":"Blog","contact":"Contact"},"cta":{"request_quote":"Demander un devis","learn_more":"En savoir plus","download_catalog":"Télécharger le catalogue"},"hero":{"title":"L'IA par ceux qui la font. Pour ceux qui veulent la maîtriser.","subtitle":"Ikasia forme les professionnels et les entreprises à l'intelligence artificielle avec une approche pratique, accessible et alignée sur l'état de l'art technologique."},"devis":{"title":"Demander un devis groupe","subtitle":"Vous souhaitez former une équipe ? Remplissez ce formulaire pour recevoir une proposition sur mesure adaptée à vos enjeux et à votre budget.","form":{"title":"Votre projet de formation","subtitle":"Dites-nous en plus sur vos besoins","firstName":"Prénom","lastName":"Nom","email":"Email professionnel","phone":"Téléphone","company":"Entreprise","role":"Poste","participants":"Nombre de participants (estimé)","trainings":"Formations souhaitées","format":"Format préféré","formats":{"online":"Distanciel (Visio)","onsite":"Présentiel (Vos locaux)","hybrid":"Hybride"},"message":"Message (contexte, objectifs, dates souhaitées...)","submit":"Recevoir mon devis","submitting":"Envoi en cours...","success":{"title":"Demande reçue !","message":"Merci de votre intérêt. Notre équipe va étudier votre demande et vous enverra une proposition sous 24-48h.","button":"Retour à l'accueil"}}}},"now":"$undefined","timeZone":"Europe/Paris","children":["$","div",null,{"className":"flex min-h-screen flex-col","children":["$L3d",["$","main",null,{"className":"flex-1","children":["$","$L2",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L3",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","forbidden":"$undefined","unauthorized":"$undefined"}]}],["$","footer",null,{"className":"bg-gray-50 border-t","children":["$","div",null,{"className":"container py-12 md:py-16","children":[["$","div",null,{"className":"grid grid-cols-1 md:grid-cols-4 gap-8","children":[["$","div",null,{"className":"space-y-4","children":["$L3e",["$","p",null,{"className":"text-sm text-gray-500","children":"Formation et conseil en Intelligence Artificielle pour les entreprises et les professionnels."}]]}],["$","div",null,{"children":[["$","h3",null,{"className":"font-semibold mb-4","children":"Formations"}],["$","ul",null,{"className":"space-y-2 text-sm text-gray-500","children":[["$","li",null,{"children":"$L3f"}],["$","li",null,{"children":"$L40"}],["$","li",null,{"children":"$L41"}]]}]]}],["$","div",null,{"children":[["$","h3",null,{"className":"font-semibold mb-4","children":"Entreprise"}],"$L42"]}],"$L43"]}],"$L44"]}]}],"$L45"]}]}] 4d:I[40030,["/_next/static/chunks/e70cf233ca02384a.js","/_next/static/chunks/c72270908abd0eb3.js","/_next/static/chunks/d27307698ed538b1.js"],"CookieConsent"] 54:I[29748,["/_next/static/chunks/e70cf233ca02384a.js","/_next/static/chunks/c72270908abd0eb3.js","/_next/static/chunks/d27307698ed538b1.js"],"LanguageSwitcher"] 42:["$","ul",null,{"className":"space-y-2 text-sm text-gray-500","children":[["$","li",null,{"children":"$L46"}],["$","li",null,{"children":"$L47"}],["$","li",null,{"children":"$L48"}]]}] 43:["$","div",null,{"children":[["$","h3",null,{"className":"font-semibold mb-4","children":"Légal"}],["$","ul",null,{"className":"space-y-2 text-sm text-gray-500","children":[["$","li",null,{"children":"$L49"}],["$","li",null,{"children":"$L4a"}],["$","li",null,{"children":"$L4b"}],["$","li",null,{"children":"$L4c"}]]}]]}] 44:["$","div",null,{"className":"mt-12 pt-8 border-t text-center text-sm text-gray-500","children":["© ",2025," Ikasia.ai. Tous droits réservés."]}] 45:["$","$L4d",null,{}] a:[["$","meta","0",{"charSet":"utf-8"}],["$","meta","1",{"name":"viewport","content":"width=device-width, initial-scale=1"}]] 3d:["$","header",null,{"className":"sticky top-0 z-50 w-full border-b bg-background/95 backdrop-blur supports-[backdrop-filter]:bg-background/60","children":["$","div",null,{"className":"container flex h-16 items-center justify-between","children":[["$","div",null,{"className":"flex items-center","children":"$L4e"}],["$","nav",null,{"className":"hidden md:flex gap-6 items-center","children":["$L4f","$L50","$L51","$L52","$L53"]}],["$","div",null,{"className":"flex items-center gap-4","children":[["$","$L54",null,{}],"$L55"]}]]}]}] 3e:["$","$L3a",null,{"ref":"$undefined","href":"/fr","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"inline-block","children":["$","$Lf",null,{"src":"/images/logo.jpg","alt":"Ikasia Logo","width":300,"height":100,"className":"w-64 h-auto"}]}] 3f:["$","$L3a",null,{"ref":"$undefined","href":"/fr/formations","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"hover:text-primary","children":"Stratégie IA"}] 40:["$","$L3a",null,{"ref":"$undefined","href":"/fr/formations","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"hover:text-primary","children":"IA pour Managers"}] 41:["$","$L3a",null,{"ref":"$undefined","href":"/fr/formations","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"hover:text-primary","children":"Data Science Bootcamp"}] 46:["$","$L3a",null,{"ref":"$undefined","href":"/fr/a-propos","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"hover:text-primary","children":"À propos"}] 47:["$","$L3a",null,{"ref":"$undefined","href":"/fr/blog","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"hover:text-primary","children":"Blog"}] 48:["$","$L3a",null,{"ref":"$undefined","href":"/fr/contact","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"hover:text-primary","children":"Contact"}] 49:["$","$L3a",null,{"ref":"$undefined","href":"/fr/legal/mentions-legales","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"hover:text-primary","children":"Mentions Légales"}] 4a:["$","$L3a",null,{"ref":"$undefined","href":"/fr/legal/confidentialite","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"hover:text-primary","children":"Confidentialité"}] 4b:["$","$L3a",null,{"ref":"$undefined","href":"/fr/legal/cookies","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"hover:text-primary","children":"Cookies"}] 4c:["$","$L3a",null,{"ref":"$undefined","href":"/fr/legal/cgv","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"hover:text-primary","children":"CGV"}] 4e:["$","$L3a",null,{"ref":"$undefined","href":"/fr","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"flex items-center space-x-2","children":["$","div",null,{"className":"h-10 overflow-hidden flex items-end","children":["$","$Lf",null,{"src":"/images/logo.jpg","alt":"Ikasia Logo","width":200,"height":200,"className":"w-auto h-24 object-cover object-bottom -mb-2"}]}]}] 4f:["$","$L3a",null,{"ref":"$undefined","href":"/fr/formations","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"text-sm font-medium hover:text-primary transition-colors","children":"Formations"}] 50:["$","$L3a",null,{"ref":"$undefined","href":"/fr/ateliers","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"text-sm font-medium hover:text-primary transition-colors","children":"Ateliers"}] 51:["$","$L3a",null,{"ref":"$undefined","href":"/fr/a-propos","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"text-sm font-medium hover:text-primary transition-colors","children":"À propos"}] 52:["$","$L3a",null,{"ref":"$undefined","href":"/fr/blog","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"text-sm font-medium hover:text-primary transition-colors","children":"Blog"}] 53:["$","$L3a",null,{"ref":"$undefined","href":"/fr/contact","locale":"$undefined","localeCookie":"$e:props:localeCookie","className":"text-sm font-medium hover:text-primary transition-colors","children":"Contact"}] 55:["$","$L3a",null,{"ref":null,"href":"/fr/contact","locale":"$undefined","localeCookie":"$e:props:localeCookie","children":"Contact","data-slot":"button","className":"items-center justify-center gap-2 whitespace-nowrap rounded-md text-sm font-medium transition-all disabled:pointer-events-none disabled:opacity-50 [&_svg]:pointer-events-none [&_svg:not([class*='size-'])]:size-4 shrink-0 [&_svg]:shrink-0 outline-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive bg-primary text-primary-foreground hover:bg-primary/90 h-9 px-4 py-2 has-[>svg]:px-3 hidden md:inline-flex"}] 56:I[98433,["/_next/static/chunks/b292ef59945299fb.js","/_next/static/chunks/db1ed03dad8fa1ad.js"],"IconMark"] c:[["$","title","0",{"children":"RAG vs Fine-tuning : quelle approche pour votre use case ? | Blog Ikasia"}],["$","meta","1",{"name":"description","content":"Vous voulez adapter un LLM à vos données métiers ? Deux approches s'offrent à vous : RAG (Retrieval-Augmented Generation) et Fine-tuning. Comment choisir ?"}],["$","meta","2",{"property":"og:title","content":"RAG vs Fine-tuning : quelle approche pour votre use case ?"}],["$","meta","3",{"property":"og:description","content":"Vous voulez adapter un LLM à vos données métiers ? Deux approches s'offrent à vous : RAG (Retrieval-Augmented Generation) et Fine-tuning. Comment choisir ?"}],["$","meta","4",{"property":"og:type","content":"article"}],["$","meta","5",{"property":"article:published_time","content":"2025-01-05"}],["$","meta","6",{"property":"article:author","content":"Dr. Sophie Laurent"}],["$","meta","7",{"property":"article:tag","content":"RAG"}],["$","meta","8",{"property":"article:tag","content":"FineTuning"}],["$","meta","9",{"property":"article:tag","content":"LLM"}],["$","meta","10",{"property":"article:tag","content":"MachineLearning"}],["$","meta","11",{"name":"twitter:card","content":"summary"}],["$","meta","12",{"name":"twitter:title","content":"RAG vs Fine-tuning : quelle approche pour votre use case ?"}],["$","meta","13",{"name":"twitter:description","content":"Vous voulez adapter un LLM à vos données métiers ? Deux approches s'offrent à vous : RAG (Retrieval-Augmented Generation) et Fine-tuning. Comment choisir ?"}],["$","link","14",{"rel":"icon","href":"/favicon.ico?favicon.0b3bf435.ico","sizes":"256x256","type":"image/x-icon"}],["$","$L56","15",{}]] 8:null