1:"$Sreact.fragment" 2:I[69286,["/_next/static/chunks/e70cf233ca02384a.js","/_next/static/chunks/c72270908abd0eb3.js","/_next/static/chunks/d27307698ed538b1.js"],"default"] 3:I[83977,["/_next/static/chunks/e70cf233ca02384a.js","/_next/static/chunks/c72270908abd0eb3.js","/_next/static/chunks/d27307698ed538b1.js"],"Image"] a:I[99456,["/_next/static/chunks/b292ef59945299fb.js","/_next/static/chunks/db1ed03dad8fa1ad.js"],"OutletBoundary"] b:"$Sreact.suspense" 0:{"buildId":"hEyQdfANp7GcGtypER5lV","rsc":["$","$1","c",{"children":[["$","article",null,{"className":"container py-12 md:py-20","children":["$","div",null,{"className":"max-w-3xl mx-auto","children":[["$","$L2",null,{"ref":null,"href":"/fr/blog","localeCookie":{"name":"NEXT_LOCALE","sameSite":"lax"},"children":[["$","svg",null,{"xmlns":"http://www.w3.org/2000/svg","width":24,"height":24,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-arrow-left mr-2 h-4 w-4","aria-hidden":"true","children":[["$","path","1l729n",{"d":"m12 19-7-7 7-7"}],["$","path","x3x0zl",{"d":"M19 12H5"}],"$undefined"]}]," Retour au blog"],"data-slot":"button","className":"inline-flex items-center justify-center gap-2 whitespace-nowrap rounded-md text-sm font-medium disabled:pointer-events-none disabled:opacity-50 [&_svg]:pointer-events-none [&_svg:not([class*='size-'])]:size-4 shrink-0 [&_svg]:shrink-0 outline-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive dark:hover:bg-accent/50 h-9 px-4 py-2 has-[>svg]:px-3 mb-8 pl-0 hover:pl-0 hover:bg-transparent text-slate-500 hover:text-primary transition-colors"}],["$","div",null,{"className":"space-y-6 mb-12","children":[["$","div",null,{"className":"flex flex-wrap gap-2","children":["$","span",null,{"data-slot":"badge","className":"inline-flex items-center justify-center rounded-full border font-medium w-fit whitespace-nowrap shrink-0 [&>svg]:size-3 gap-1 [&>svg]:pointer-events-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive transition-[color,box-shadow] overflow-hidden border-transparent [a&]:hover:bg-primary/90 bg-primary/10 text-primary hover:bg-primary/20 border-none text-sm px-3 py-1"}]}],["$","h1",null,{"className":"text-3xl md:text-5xl font-bold leading-tight","children":"L'essor des Small Language Models (SLM) : L'IA embarquée sur mobile"}],["$","div",null,{"className":"relative w-full aspect-video rounded-xl overflow-hidden my-8 shadow-lg","children":["$","$L3",null,{"src":"/images/blog_slm_mobile.png","alt":"L'essor des Small Language Models (SLM) : L'IA embarquée sur mobile","fill":true,"className":"object-cover","priority":true}]}],["$","div",null,{"className":"flex flex-wrap items-center gap-6 text-slate-500 text-sm border-b border-slate-100 dark:border-slate-800 pb-8","children":[["$","div",null,{"className":"flex items-center gap-2","children":[["$","svg",null,{"xmlns":"http://www.w3.org/2000/svg","width":16,"height":16,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-user","aria-hidden":"true","children":[["$","path","975kel",{"d":"M19 21v-2a4 4 0 0 0-4-4H9a4 4 0 0 0-4 4v2"}],["$","circle","17ys0d",{"cx":"12","cy":"7","r":"4"}],"$undefined"]}],["$","span",null,{"className":"font-medium text-slate-900 dark:text-slate-200","children":"Sophie Laurent"}]]}],["$","div",null,{"className":"flex items-center gap-2","children":[["$","svg",null,{"xmlns":"http://www.w3.org/2000/svg","width":16,"height":16,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-calendar","aria-hidden":"true","children":[["$","path","1cmpym",{"d":"M8 2v4"}],["$","path","4m81vk",{"d":"M16 2v4"}],["$","rect","1hopcy",{"width":"18","height":"18","x":"3","y":"4","rx":"2"}],["$","path","8toen8",{"d":"M3 10h18"}],"$undefined"]}],["$","span",null,{"children":"2025-07-18"}]]}],["$","div",null,{"className":"flex items-center gap-2","children":[["$","svg",null,{"xmlns":"http://www.w3.org/2000/svg","width":16,"height":16,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-clock","aria-hidden":"true","children":["$L4","$L5","$undefined"]}],"$L6"]}]]}]]}],"$L7","$L8"]}]}],null,"$L9"]}],"loading":null,"isPartial":false} 4:["$","path","mmk7yg",{"d":"M12 6v6l4 2"}] 5:["$","circle","1mglay",{"cx":"12","cy":"12","r":"10"}] 6:["$","span",null,{"children":"5 min"}] 7:["$","div",null,{"className":"prose prose-lg dark:prose-invert max-w-none","children":["$","article",null,{"className":"prose prose-lg max-w-none prose-headings:font-heading prose-a:text-primary hover:prose-a:text-primary-700","children":[["$","h2","h2-0",{"className":"text-3xl font-semibold mb-4 mt-12 text-gray-800 border-b pb-2","children":"La course à la miniaturisation"}],"\n",["$","p","p-0",{"className":"mb-4 text-gray-600 leading-relaxed","children":["Pendant des années, la tendance était au \"toujours plus gros\" (GPT-3, GPT-4). Mais en 2024-2025, une contre-tendance forte émerge : les ",["$","strong","strong-0",{"children":"Small Language Models (SLM)"}],". Des modèles comme Phi-3 de Microsoft, Gemma de Google ou Llama 3 8B de Meta prouvent qu'on peut avoir des performances étonnantes avec peu de paramètres."]}],"\n",["$","h2","h2-1",{"className":"text-3xl font-semibold mb-4 mt-12 text-gray-800 border-b pb-2","children":"Pourquoi faire petit ?"}],"\n",["$","h3","h3-0",{"className":"text-2xl font-semibold mb-3 mt-8 text-gray-700","children":"1. Confidentialité (Privacy)"}],"\n",["$","p","p-1",{"className":"mb-4 text-gray-600 leading-relaxed","children":"Un SLM peut tourner entièrement en local sur votre ordinateur ou votre smartphone. Aucune donnée ne part dans le cloud. C'est un argument décisif pour les secteurs sensibles (santé, défense, finance) ou pour les applications de messagerie privée."}],"\n",["$","h3","h3-1",{"className":"text-2xl font-semibold mb-3 mt-8 text-gray-700","children":"2. Latence et disponibilité"}],"\n",["$","p","p-2",{"className":"mb-4 text-gray-600 leading-relaxed","children":"Pas besoin d'attendre une réponse serveur. L'inférence est immédiate, même en mode avion. Idéal pour les assistants vocaux, la traduction en temps réel ou les aides à la navigation."}],"\n",["$","h3","h3-2",{"className":"text-2xl font-semibold mb-3 mt-8 text-gray-700","children":"3. Coût et Énergie"}],"\n",["$","p","p-3",{"className":"mb-4 text-gray-600 leading-relaxed","children":"Faire tourner un LLM géant coûte cher en GPU et en électricité. Un SLM consomme une fraction de cette énergie, rendant l'IA plus soutenable écologiquement et économiquement viable pour des cas d'usage à faible marge."}],"\n",["$","h2","h2-2",{"className":"text-3xl font-semibold mb-4 mt-12 text-gray-800 border-b pb-2","children":"Les limites"}],"\n",["$","p","p-4",{"className":"mb-4 text-gray-600 leading-relaxed","children":"Évidemment, un modèle de 3 milliards de paramètres ne remplacera pas GPT-4 pour rédiger un roman complexe ou résoudre des problèmes de physique quantique. Les SLM sont moins \"généralistes\". Ils excellent sur des tâches spécifiques pour lesquelles ils ont été optimisés (résumé, classification, chat basique)."}],"\n",["$","h2","h2-3",{"className":"text-3xl font-semibold mb-4 mt-12 text-gray-800 border-b pb-2","children":"L'avenir est hybride"}],"\n",["$","p","p-5",{"className":"mb-4 text-gray-600 leading-relaxed","children":"L'architecture de demain sera probablement hybride : un SLM local gère 80% des requêtes simples (rapide, gratuit, privé), et délègue au cloud (GPT-5) les 20% de tâches complexes nécessitant une intelligence supérieure."}]]}]}] 8:["$","div",null,{"className":"mt-12 pt-8 border-t border-slate-100 dark:border-slate-800","children":[["$","h3",null,{"className":"text-lg font-semibold mb-4","children":"Tags"}],["$","div",null,{"className":"flex flex-wrap gap-2","children":[["$","span","SLM",{"data-slot":"badge","className":"inline-flex items-center justify-center rounded-full border px-2 py-0.5 text-xs font-medium w-fit whitespace-nowrap shrink-0 [&>svg]:size-3 gap-1 [&>svg]:pointer-events-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive transition-[color,box-shadow] overflow-hidden [a&]:hover:bg-accent [a&]:hover:text-accent-foreground text-slate-600","children":[["$","svg",null,{"xmlns":"http://www.w3.org/2000/svg","width":12,"height":12,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-tag mr-1","aria-hidden":"true","children":[["$","path","vktsd0",{"d":"M12.586 2.586A2 2 0 0 0 11.172 2H4a2 2 0 0 0-2 2v7.172a2 2 0 0 0 .586 1.414l8.704 8.704a2.426 2.426 0 0 0 3.42 0l6.58-6.58a2.426 2.426 0 0 0 0-3.42z"}],["$","circle","kqv944",{"cx":"7.5","cy":"7.5","r":".5","fill":"currentColor"}],"$undefined"]}]," ","SLM"]}],["$","span","Edge AI",{"data-slot":"badge","className":"inline-flex items-center justify-center rounded-full border px-2 py-0.5 text-xs font-medium w-fit whitespace-nowrap shrink-0 [&>svg]:size-3 gap-1 [&>svg]:pointer-events-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive transition-[color,box-shadow] overflow-hidden [a&]:hover:bg-accent [a&]:hover:text-accent-foreground text-slate-600","children":[["$","svg",null,{"xmlns":"http://www.w3.org/2000/svg","width":12,"height":12,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-tag mr-1","aria-hidden":"true","children":[["$","path","vktsd0",{"d":"M12.586 2.586A2 2 0 0 0 11.172 2H4a2 2 0 0 0-2 2v7.172a2 2 0 0 0 .586 1.414l8.704 8.704a2.426 2.426 0 0 0 3.42 0l6.58-6.58a2.426 2.426 0 0 0 0-3.42z"}],["$","circle","kqv944",{"cx":"7.5","cy":"7.5","r":".5","fill":"currentColor"}],"$undefined"]}]," ","Edge AI"]}],["$","span","Mobile",{"data-slot":"badge","className":"inline-flex items-center justify-center rounded-full border px-2 py-0.5 text-xs font-medium w-fit whitespace-nowrap shrink-0 [&>svg]:size-3 gap-1 [&>svg]:pointer-events-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive transition-[color,box-shadow] overflow-hidden [a&]:hover:bg-accent [a&]:hover:text-accent-foreground text-slate-600","children":[["$","svg",null,{"xmlns":"http://www.w3.org/2000/svg","width":12,"height":12,"viewBox":"0 0 24 24","fill":"none","stroke":"currentColor","strokeWidth":2,"strokeLinecap":"round","strokeLinejoin":"round","className":"lucide lucide-tag mr-1","aria-hidden":"true","children":[["$","path","vktsd0",{"d":"M12.586 2.586A2 2 0 0 0 11.172 2H4a2 2 0 0 0-2 2v7.172a2 2 0 0 0 .586 1.414l8.704 8.704a2.426 2.426 0 0 0 3.42 0l6.58-6.58a2.426 2.426 0 0 0 0-3.42z"}],["$","circle","kqv944",{"cx":"7.5","cy":"7.5","r":".5","fill":"currentColor"}],"$undefined"]}]," ","Mobile"]}]]}]]}] 9:["$","$La",null,{"children":["$","$b",null,{"name":"Next.MetadataOutlet","children":"$@c"}]}] c:null